FORM TP 2014133

TEST CODE 02205020

MAY/JUNE 2014

CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION®

APPLIED MATHEMATICS

MATHEMATICAL APPLICATIONS

UNIT 2 – Paper 02

2 hours 30 minutes

26 MAY 2014 (p.m.)

This examination paper consists of THREE sections: Discrete Mathematics, Probability and Distributions, and Particle Mechanics.

Each section consists of 2 questions. The maximum mark for each section is 50. The maximum mark for this examination is 150. This examination consists of 8 printed pages and 1 answer sheet for Question 5 (a) (i).

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

- 1. DO NOT open this examination paper until instructed to do so.
- 2. Answer ALL questions from the THREE sections.
- 3. Unless otherwise stated in the question, all numerical answers MUST be given exactly OR to three significant figures as appropriate.

Examination Materials:

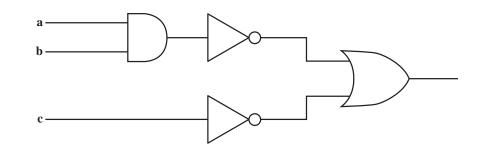
Mathematical formulae and tables (Revised 2010) Electronic calculator Ruler and graph paper

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

Copyright © 2012 Caribbean Examinations Council All rights reserved.

NOTHING HAS BEEN OMITTED.

GO ON TO THE NEXT PAGE


SECTION A

MODULE 1: DISCRETE MATHEMATICS

Answer BOTH questions.

- **1.** (a) State the contrapositive of $p \Rightarrow \sim q$. [3 marks]
 - (b) Construct a truth table for the inverse of $p \Rightarrow \sim q$. [5 marks]
 - (c) (i) Construct a truth table for $(p \to q) \lor (q \to r)$. [5 marks]
 - (ii) Hence, state with reason, whether (i) above is a tautology or a contradiction. [2 marks]

(d) Determine the Boolean expression for the following logic circuit.

[4 marks]

(e) (i) Draw a switching circuit for the Boolean expression $A \lor (B \land C)$. [3 marks]

(ii) Use the distributive law to expand the Boolean expression $A \lor (B \land C)$. [3 marks]

[.....]

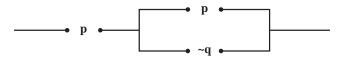
Total 25 marks

Activity	Duration	Preceding activities		
А	6	_		
В	5	А		
С	8	А		
D	3	А		
Е	3	D		
F	9	Е		
G	9	Е		
Н	10	B, F, G, C		

2. (a) Eight activities A, B, C, D, E, F, G and H with their preceeding activities and duration times are given in the table below.

- (i) Using the algorithm method, or otherwise, construct the activity network for these activities. [12 marks]
- (ii) Copy and complete the following table, giving the earliest start time, latest start time and float time for EACH activity.

Activity	Earliest Start Time	Latest Start Time	Float Time
А			
В			
С			
D			
Е			
F			
G			
Н			


[4 marks]

[2 marks]

(iii) Hence, obtain the critical path(s).

GO ON TO THE NEXT PAGE

(b) (i) Represent the circuit below as a Boolean expression.

[3 marks]

(ii) Construct its truth table.

[4 marks]

Total 25 marks

SECTION B

MODULE 2: PROBABILITY AND DISTRIBUTIONS

Answer BOTH questions.

3. (a) A and B are two independent events such that P(A) = 0.6, P(B) = 0.15.

Calculate $P(A' \cap B')$.

[4 marks]

- (b) In a choir with 30 members, 12 sing soprano, 7 sing alto, 6 sing tenor and 5 sing bass. Three members of the choir are randomly chosen to sing for a special occasion.
 - (i) Determine the probability that

a)	two sing soprano and one sings tenor	[4 marks]
----	--------------------------------------	-----------

- b) one soprano, one tenor and one bass are chosen [4 marks]
- c) three tenors are chosen given that the three persons all sing the SAME part [5 marks]
- (ii) A committee of 9 is to be drawn from the members of the choir. Determine the probability that the committee contains EXACTLY 2 basses and 3 tenors.

[4 marks]

(iii) The 6 tenors and 5 basses are to be seated at a circular table so that two tenors are next to each other, and the remainder sit alternately. In how many ways can this be done? [4 marks]

Total 25 marks

- **4.** (a) A cloth manufacturer knows that faults occur randomly in the production process at a rate of 3 every 15 metres.
 - (i) Find the probability that there are of EXACTLY 4 faults in a 15-metre length of cloth. [3 marks]
 - (ii) Calculate the probability of AT LEAST 2 faults in a 60-metre length of cloth. [3 marks]
 - (b) A crate contains oranges whose masses can be modelled by a normal distribution with mean 62.2 g and standard deviation of 3.6 g.

An orange is taken at random from the crate. Calculate the probability that the mass is

- (i) less than 60 g. [4 marks]
- (ii) between 61 g and 64 g. [4 marks]
- (c) Two independent random variables *X* and *Y* have probability distribution functions given by

	X		0	1	2		Y	0	1	2	3	4
_	P(X = x)	r)	0.2	0.3	0.5		P(Y=y)	0.2	0.1	0.3	0.25	0.15
(i)	Calc	culate	P(X)	+Y =	3).						[2 n	narks]
(ii)	Eval	Evaluate:										
	a)	E(2	K)								[1]	mark]
	b)	Vai	r (X)								[1]	mark]
	c)	E(Y	Y)								[1]	mark]
	d)	Vai	r (Y)								[1]	mark]
(iii)	Hen	ce, d	eterm	ine								
	a)	E(3	3X - 2	2 <i>Y</i>)							[2 n	narks]
	b)	Vai	r (3X -	– 2 <i>Y</i>).							[3 n	narks]
										То	tal 25 i	marks

GO ON TO THE NEXT PAGE

SECTION C

MODULE 3: PARTICLE MECHANICS

Answer BOTH questions.

[Take *g* as 10 *ms*⁻²]

- 5. (a) A particle moves along a straight line and the origin *O* is a fixed point on that line. The displacement *s* metres of the particle from *O* at time *t* seconds is s = (t 2) (t 6).
 - (i) On the answer sheet provided as an insert, draw a displacement time graph for $0 \le t \le 8$. [4 marks]
 - (ii) From your graph calculate
 - a) the total distance travelled in the period $0 \le t \le 5$ [3 marks]
 - b) the average velocity over the period $0 \le t \le 5$ [3 marks]
 - c) the time at which the velocity is zero. [2 marks]
 - (b) A particle of mass *m* kg rests on a horizontal plane such that the resultant *S* of the normal force and the frictional force makes an angle of λ with the normal. A force *P* inclined at an angle α to the plane is applied to the particle until it is just about to move.

(i)	Draw a force diagram to illustrate this information.	[4 marks]
(ii)	Find the LEAST value of <i>P</i> and the value of α when <i>P</i> is least.	[7 marks]
(iii)	Determine the LEAST value of <i>P</i> in terms of <i>m</i> when $\alpha = 30^{\circ}$.	[2 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

6. (a) Formulate the equation of the trajectory of a projectile. [4 marks]

(b) A ball is projected with velocity 45 ms^{-1} at an angle of inclination α to the horizontal from a point *A*, which is at a height 4 metres above the horizontal ground. The ball strikes the ground at *B*, which is at a horizontal distance of 90 metres from the point *A*. Ignoring air resistance, answer the following:

(i)	Show that 20 $\tan^2 \alpha - 90 \tan \alpha + 16 = 0$.	[2 marks]
-----	--	-----------

- (ii) Hence, find to the nearest degree, the TWO possible values of α . [5 marks]
- (iii) Find, to the nearest second, the MINIMUM possible time of flight from A to B. [3 marks]
- (c) A particle, *P*, moves on the *x*-axis. The acceleration of *P* at time, *t* seconds, $t \ge 0$, is $(3t + 5) \text{ ms}^{-2}$ in the positive *x*-direction. When t = 0, the velocity of *P* is 2 ms⁻¹ in the positive *x*-direction. When t = T, the velocity of *P* is 6 ms⁻¹ in the positive *x*-direction.

Find the value of *T*.

[6 marks]

(d) A particle of mass *m* kg slides from rest down a plane inclined at 35° to the horizontal. If the resistance to motion is *ms* newtons where *s* metres is the displacement of the particle from its initial position, find the velocity of the particle when s = 3. [5 marks]

Total 25 marks

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.

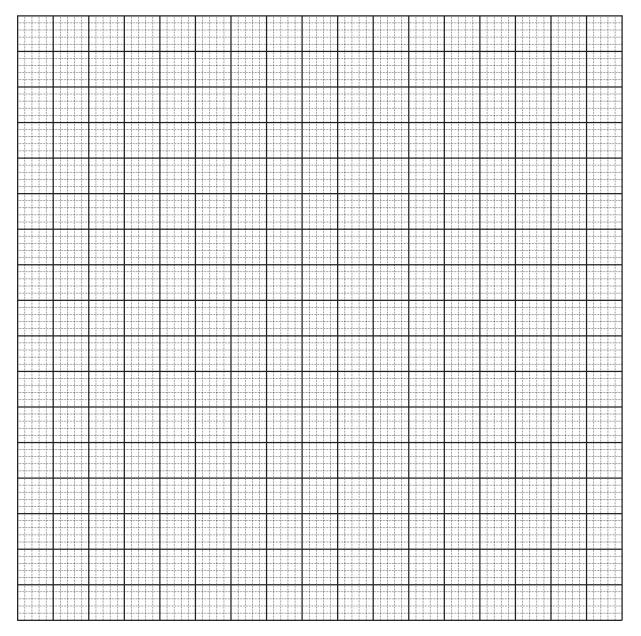
FORM TP 2014133

TEST CODE 02205020

MAY/JUNE 2014

CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION®


APPLIED MATHEMATICS

STATISTICAL ANALYSIS

UNIT 2 – Paper 02

Graph Sheet for Question 5 (a) (i)

Candidate Number

ATTACH THIS ANSWER SHEET TO YOUR ANSWER BOOKLET